首页> 外文OA文献 >Predicting the Category and Attributes of Visual Search Targets Using Deep Gaze Pooling
【2h】

Predicting the Category and Attributes of Visual Search Targets Using Deep Gaze Pooling

机译:用Visual Basic预测Visual search目标的类别和属性   深凝视池

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Predicting the target of visual search from eye fixation (gaze) data is achallenging problem with many applications in human-computer interaction. Incontrast to previous work that has focused on individual instances as a searchtarget, we propose the first approach to predict categories and attributes ofsearch targets based on gaze data. However, state of the art models forcategorical recognition, in general, require large amounts of training data,which is prohibitive for gaze data. To address this challenge, we propose anovel Gaze Pooling Layer that integrates gaze information into CNN-basedarchitectures as an attention mechanism - incorporating both spatial andtemporal aspects of human gaze behavior. We show that our approach is effectiveeven when the gaze pooling layer is added to an already trained CNN, thuseliminating the need for expensive joint data collection of visual and gazedata. We propose an experimental setup and data set and demonstrate theeffectiveness of our method for search target prediction based on gazebehavior. We further study how to integrate temporal and spatial gazeinformation most effectively, and indicate directions for future research inthe gaze-based prediction of mental states.
机译:从人眼注视(注视)数据预测视觉搜索的目标是人机交互中许多应用面临的难题。与以前的工作集中于单个实例作为搜索目标的工作相反,我们提出了第一种基于凝视数据预测搜索目标的类别和属性的方法。但是,用于分类识别的最新模型通常需要大量的训练数据,这对于凝视数据是不利的。为了应对这一挑战,我们提出了anovel凝视池层,该层将凝视信息集成到基于CNN的体系结构中作为关注机制-融合了人类凝视行为的时空方面。我们表明,即使将凝视池层添加到已经训练有素的CNN上,我们的方法仍然有效,从而消除了对视觉和凝视数据的昂贵联合数据收集的需求。我们提出了一个实验装置和数据集,并证明了我们基于凝视行为的搜索目标预测方法的有效性。我们进一步研究如何最有效地整合时空注视信息,并为基于注视的心理状态预测指明未来的研究方向。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号